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production processes?
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Abstract. The extended Gaussian ensemble introduced recently as a generalization of the canonical en-
semble, which allows to treat energy fluctuations present in the system, is used to analyze the inelasticity
distributions in high energy multiparticle production processes.

PACS. 13.85.-t Hadron-induced high- and super-high-energy interactions (energy > 10 GeV) (for low
energies, see 13.75.-n) – 24.60.-k Statistical theory and fluctuations – 12.40.Ee Statistical models

1 Introduction

The high energy multiparticle production processes are
very important source of information on the dynamics of
hadronization process, in which some amount of the ini-
tially available energy is subsequently transformed into
a number of secondaries of different types. Such processes
can be described only via phenomenological models, which
are stressing their different dynamical aspects, like spe-
cific energy flows [1] or their apparent thermal-like char-
acter [2]. Actually most of the characteristic features of
hadronization can be described in universal manner by
means of Information Theory (IT) approach, both in its
extensive [3] or nonextensive [4–6] versions. The main dif-
ference between them is that whereas former is using only
energy-momentum conservation constraint, the later ac-
counts also for some intrinsic fluctuations present in the
hadronization process, either in the form of fluctuations of
temperature [7] or in the form of fluctuations of the num-
ber of produced secondaries [4]1. Recently the extended
gaussian ensemble (EGE) approach has been proposed to
account for some fluctuations in statistical mechanics and
it was presented also in the IT formulation [10]. The ques-
tion, which we would like to address here, is whether EGE
can find application in deducing some new information
from hadronic production processes.
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1 Accounting for the fact that multiplicity distribution of

observed secondaries are not Poissonian [8].

2 Extended Gaussian ensemble from IT

Following [3–6] we are interested in applying IT to deduce
the most probable and least biased energy distributions
of particles produced in hadronization process in which
mass M transforms into given number N of secondaries
of mass µ and mean transverse mass µT =

√
µ2 + 〈pT 〉2

each, distributed in the longitudinal phase space described
by rapidity variable, y (such that energy of particle is E =
µT cosh y). We are therefore interested in (normalized) ra-
pidity distribution p(y) = (1/N) · dN/dy,

∫
dyp(y) = 1,

which according to IT [3] is obtained by maximizing Shan-
non entropy

S = −
∫

dyp(y) ln p(y), (1)

under condition of reproducing known a priori mean value
of energy of produced secondaries (K denotes the so called
inelasticity of reaction to be discussed later),

〈E(y)〉 =
∫ Ym

−Ym

dy [µT · cosh y] · p(y) = U =
K

N
· M. (2)

Whereas in [4] one uses Tsallis entropy instead Shannon
ones and defines constraints (2) in slightly different way,
the EGE approach [10] simply adds one more constraint
to (2) in the form of a priori known fluctuations of mean
energy of given secondary given by its variance W ,

〈[E(y)−U ]2〉 =
∫ Ym

−Ym

dy [µT · cosh y − U ]2·p(y) = W. (3)
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In this case [10]

p(y) =
1
Z

· exp
[
−β · µT cosh y − γ · (U − µT cosh y)2

]
,

(4)
where Z is normalization constant and β =
β(U, W, N, µT ), γ = γ(U, W, N, µT ) are two Lagrange
multipliers for the constraints (2) and (3), respectively.
In the case of no dynamical fluctuations, i.e., γ = 0,
one recovers situation already known from [3,4] (with
some W0 = 1/β2 with respect to which one should
estimate effect of dynamical correlations)2. Rewriting
equation (4) as

p(y) =
1
Z
·exp (−β∗ · µT cosh y) ; β∗ = β−γ · [2U − E(y)] ,

(5)
one obtains expression formally resembling the usual
Boltzmann-Gibbs formula, but this time with energy-
dependent inverse “temperature” β∗ (which is thus no
longer intensive variable). Actually such possibility was
already discussed in [11] in the context of reservoir with
finite heat capacity. It was argued there that if

d

dE

[
1

β(E)

]
= q − 1, (6)

where q is some constant, then the corresponding distribu-
tion (where E(y) = µT cosh y) takes form of the so called
Tsallis distribution [9],

pq(y) =
1

Zq(M, N)
[1 − (1 − q)βq(M, N) · E(y)]

1
1−q ,

(7)
with q given by (6)3. In our case where β = β∗ one gets
formally energy dependent Tsallis nonextensivity q pa-
rameter

q = 1 − γ

[(β − 2γU) + γE]2
. (8)

For γ > 0 it becomes smaller than unity and exceeds unity
for γ < 0. It coincides with result of [10] only if |γ(E −
2U)/β| << 1 in which case q = 1 − γ/β2.

3 Inelasticity distributions χ(K) in EGE

We have tried to apply EGE distribution as defined by
equation (4) to analyze the same multiparticle data as
in [4] only to discover that these data do not require EGE,
the best fit is obtained with γ = 0 or slightly negative (in
which case the respective q from (8) exceeds unity, as has
been found in [4]). The reason for this is obvious when in-
specting Figure 1, which confronts rapidity distributions

2 In the center of mass frame y ∈ (−Ym, Ym) where Ym =

ln
[
M ′

(
1 +

√
1 − 4µ2

T /M ′2
)

/(2µT )
]

and where M ′ = M −
(N − 2)µT .

3 Care must be taken here when considering signs because
in [11] one considers dependence of β on the energy of the
reservoir, ER, and here we have energy of particle E = Etotal−
ER. Therefore our q − 1 corresponds to 1 − q there.

Fig. 1. (a) Examples of the most probable rapidity distri-
butions as given by equation (5) for hadronizing mass M =
100 GeV decaying into N secondaries of (transverse) mass
µT = 0.4 GeV each for different values of q parameter. (b) The
same but using equation (4) with different values of fluctua-
tions given by kW such that W = k2

W W0 where W0 are the
intrinsic statistical fluctuations present in the system when
γ = 0, i.e., where gaussian becomes pure exponential.
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Fig. 2. Inelasticity distributions χ(K) (normalized to unity)
obtained in [4] from analysis of multiparticle production data
for

√
s = 200 GeV and

√
s = 900 GeV fitted by gaussian,

χ(K) � exp
[−(K − 〈K〉)2/(2σ2)

]
(full lines), and lorentzian,

χ(K) � σ/[4(K −〈K〉)2 +σ2] (dash-dotted lines) formulas, re-
spectively. The values of parameters (〈K〉; σ) for gaussian case
are (0.52; 0.24) and (0.38; 0.20) for 200 GeV and 900 GeV, re-
spectively; for lorentzian case they are, respectively, (0.52; 0.25)
and (0.39; 0.17) (see [4] for more details).

of the Tsallis type (5) with those obtained from EGE (4)
obtained for hadronization of some fixed mass M into dif-
ferent number of secondaries. Results obtained using EGE
show completely different behavior from Tsallis statistics
approach clearly demonstrating that direct fluctuations in
energy used in EGE (and characterized here by parameter
kW such that W = k2

W W0 where W0 are the intrinsic sta-
tistical fluctuations present in the system when γ = 0) are
not equivalent to fluctuations described by parameter q of
Tsallis’ statistics4. This can be understood in the following
way. In standard description of hadronization processes by
means of IT in the Shannon form we always have some
(mean) number of secondaries produced 〈N〉 with (mean)
energy 〈E〉 each. Allowing for fluctuations of 〈N〉 results in
q-statistics using Tsallis entropy for IT [4]. In this case the
mean energy per particle fluctuates from event to event.
Keeping now 〈N〉 fixed but introducing distribution of en-
ergy per particle (i.e., describing energy per particle by its
mean and deviation from the mean) results in EGE5. Ev-
idently single particle distributions in hadronization pro-
cesses follow first or second scenario, not EGE.

On the other hand EGE turns out to be very useful
when applied to other characteristic of multiparticle pro-
duction, namely to inelasticity distribution, χ(K), (i.e.,

4 Notice that for kW < 1 one gets γ > 0 (actually γ → +∞
for kW → 0) whereas for kW > 1 one obtains γ < 0 leading
to equivalent q calculated according to equation (8) exceeding
unity but otherwise being uncompatible with nonextensivity
parameter used in upper panel of Figure 1.

5 Notice that decreasing fluctuations in energy in compari-
son to standard ones, i.e., assuming in Figure 1 (lower panel)
kW < 1 results in tendency of particles to condensate in a sin-
gle energy state with energy equal to Etotal/Ntotal. It means
that EGE interpolates in fact between the microcanonical and
canonical distributions [12].

distribution of the fraction of the available energy, which
is transformed into observed secondaries). In [4] it was de-
duced from data for the first time for two energies: 200 and
900 GeV, cf. Figure 2 (by analysing rapidity distributions
of secondaries in fixed multiplicity bins). Its shape has
been then fitted by gaussian and lorentzian curves but no
explanation was offered for their possible origin and there
was no argument at that time in favor of any of them. EGE
provides arguments that most probably χ(K) should be of
gaussian shape. To show this let us again follow [10] and
let us suppose that the whole energy available for a given
multiparticle production reaction, E =

√
s, is divided into

two parts: one part equal to E1 = K ·√s is going into sys-
tem producing observed secondaries whereas the rest of it,
E2 = E −E1, is not used for this purpose and, in a sense,
acts as a kind of “heath bath” (or environment) for the
first one. Both systems, the one producing particles with
energy E1 and the environment with energy E2 can be in
many possible states. Therefore

p1(E1) =
Ω1(E1)Ω2(E2)

Ω1+2(E)
, (9)

where Ω denote the corresponding number of states.
Defining entropy in the usual way as

Si(Ei) = ln Ωi(Ei), i = 1, 2 (10)

one gets

p1(E1) =
1

Ω1+2(E)
· exp [S1(E1) + S2(E2)] . (11)

Expanding now entropy around E1 = U , keeping only lin-
ear and quadratic terms and assuming that β = 1

T0
=[

∂ ln Ω
∂E1

]

E1=U
and γ = −

[
∂2 ln Ω

∂E2
1

]
are the same for both

parts of the system (generalization is straightforward) one
immediately obtains gaussian-like form for energy E1 dis-
tribution,

p1(E1) =
1

ZG
exp

[
−γ (E1 − U)2

]
, (12)

which, because E1 =
√

s·K and U =
√

s·〈K〉 (where
√

s is
energy of reaction), translates in natural way to gaussian
distribution of inelasticity, χ(K), as the most probably
form with σ2 = 1

2γ . From [4] one can also deduce the K de-
pendence of the temperature T . Notice that in our case pa-
rameter γ can be connected with T and heat capacity CV

because γ = 1/(CV T 2
0 ). On the other hand [4] provides us

also with parameter q for different inelasticities for both
energies and we know that CV can be connected with the
nonextensivity parameter q, namely 1/CV = q − 1 [7]6.
It means therefore that there is simple relation connect-
ing the width σ of the observed gaussian distribution (i.e.,

6 Notice, however, that now CV and q are different from those
in [7] as they refer to both longitudinal and transverse degrees
of freedom, cf. [5] for discussion how qL and qT can be com-
posed to produce total q.
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Fig. 3. Inelasticity dependence of the temperature parame-
ter as deduced in [4] from multiparticle data at energies 200
and 900 GeV. Black circles correspond to the corresponding
temperature obtained from the thermodynamical analysis per-
formed along the EGE ideas.

parameter γ of EGE), the temperature T0 and the nonex-
tensivity parameter q describing internal behavior of the
selected subsystem, namely

T0 =
√

2(q − 1)σE where σE = σ · √s. (13)

As can be seen in Figure 3, T0 deduced in such way agrees
very well with the (T, K) dependence deduced from anal-
ysis of rapidity distributions in fixed multiplicity bins [4].

4 Conclusions

We would like to conclude with the following remarks:

– EGE works only for the whole system, not for a sin-
gle particle. This is going to be emitted according to
its own distribution, in particular Boltzmann-Gibbs or
Tsallis, notwithstanding what the energy E1 is and
how it is distributed. For a moment we cannot offer
any convincing explanation why it is so.

– EGE is not the same (i.e., it does not describes the
same kind of fluctuations) as q-statistics. It means that
even if for some limiting cases both distribution can be
similar this is just an artifact.

– On the other hand EGE tells us that for the sys-
tem under consideration T = T (E) and E1 fluctuates.
This means that for particles emitted from this system
one should rather use Tsallis distributions reserving
Boltzmann-Gibbs ones only to the case of T = const.

Let us close with remark that the lorentzian curve shown
also in Figure 2 (and fitting data at least as well as the
gaussian one) could be explained as a kind of a nonex-
tensive extension of EGE by noticing that in q-statistical
approach one gets gaussian distribution for q = 1 and
lorentzian distribution for q = 2. We shall not pursue this
further here.
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